Bellman Fords algoritme

Bellman Ford-algoritme hjelper oss med å finne den korteste veien fra et toppunkt til alle andre hjørner i en vektet graf.

Det ligner Dijkstras algoritme, men det kan fungere med grafer der kantene kan ha negative vekter.

Hvorfor ville man noen gang ha kanter med negative vekter i det virkelige liv?

Negative vektkanter kan virke ubrukelige i begynnelsen, men de kan forklare mange fenomener som kontantstrøm, varmen som frigjøres / absorberes i en kjemisk reaksjon, etc.

For eksempel, hvis det er forskjellige måter å nå fra ett kjemikalie A til et annet kjemisk B, vil hver metode ha underreaksjoner som involverer både varmespredning og absorpsjon.

Hvis vi vil finne reaksjonssettet der det kreves minimum energi, må vi kunne faktorisere varmeabsorpsjonen som negative vekter og varmespredning som positive vekter.

Hvorfor trenger vi å være forsiktige med negative vekter?

Negative vektkanter kan skape negative vektsykluser, dvs. en syklus som vil redusere den totale baneavstanden ved å komme tilbake til samme punkt.

Negativ vekt sykluser kan gi et feil resultat når du prøver å finne ut den korteste veien

Korteste banealgoritmer som Dijkstras algoritme som ikke er i stand til å oppdage en slik syklus, kan gi et feil resultat fordi de kan gå gjennom en negativ vekt-syklus og redusere banelengden.

Hvordan Bellman Fords algoritme fungerer

Bellman Ford-algoritme fungerer ved å overvurdere lengden på stien fra startpunktet til alle andre hjørner. Deretter lindrer det estimatene iterativt ved å finne nye stier som er kortere enn de tidligere overvurderte stiene.

Ved å gjøre dette gjentatte ganger for alle hjørner, kan vi garantere at resultatet blir optimalisert.

Trinn 1 for Bellman Fords algoritme Trinn 2 for Bellman Fords algoritme Trinn 3 for Bellman Fords algoritme Trinn 4 for Bellman Fords algoritme Trinn 5 for Bellman Fords algoritme Trinn 6 for Bellman Fords algoritme

Bellman Ford Pseudokode

Vi må opprettholde stiavstanden til hvert toppunkt. Vi kan lagre det i en rekke størrelser v, hvor v er antall hjørner.

Vi ønsker også å kunne få den korteste stien, ikke bare vite lengden på den korteste stien. For dette kartlegger vi hvert toppunkt til toppunktet som sist oppdaterte banelengden.

Når algoritmen er over, kan vi gå tilbake fra destinasjonspunktet til kildepunktet for å finne stien.

 funksjon bellmanFord (G, S) for hvert toppunkt V i G avstand (V) <- uendelig forrige (V) <- NULL avstand (S) <- 0 for hvert toppunkt V i G for hver kant (U, V) i G tempDistance <- avstand (U) + kantvekt (U, V) hvis tempDistance <avstand (V) avstand (V) <- tempDistance forrige (V) <- U for hver kant (U, V) i G Hvis avstand (U) + kantvekt (U, V) <avstand (V) Feil: Negativ syklus Eksisterer returavstand (), forrige ()

Bellman Ford vs Dijkstra

Bellman Fords algoritme og Dijkstras algoritme er veldig like i struktur. Mens Dijkstra bare ser på de nærmeste naboene til et toppunkt, går Bellman gjennom hver kant i hver iterasjon.

Dijkstras vs Bellman Fords algoritme

Python, Java og C / C ++ eksempler

Python Java C C ++
 # Bellman Ford Algorithm in Python class Graph: def __init__(self, vertices): self.V = vertices # Total number of vertices in the graph self.graph = () # Array of edges # Add edges def add_edge(self, s, d, w): self.graph.append((s, d, w)) # Print the solution def print_solution(self, dist): print("Vertex Distance from Source") for i in range(self.V): print("(0) (1)".format(i, dist(i))) def bellman_ford(self, src): # Step 1: fill the distance array and predecessor array dist = (float("Inf")) * self.V # Mark the source vertex dist(src) = 0 # Step 2: relax edges |V| - 1 times for _ in range(self.V - 1): for s, d, w in self.graph: if dist(s) != float("Inf") and dist(s) + w < dist(d): dist(d) = dist(s) + w # Step 3: detect negative cycle # if value changes then we have a negative cycle in the graph # and we cannot find the shortest distances for s, d, w in self.graph: if dist(s) != float("Inf") and dist(s) + w < dist(d): print("Graph contains negative weight cycle") return # No negative weight cycle found! # Print the distance and predecessor array self.print_solution(dist) g = Graph(5) g.add_edge(0, 1, 5) g.add_edge(0, 2, 4) g.add_edge(1, 3, 3) g.add_edge(2, 1, 6) g.add_edge(3, 2, 2) g.bellman_ford(0)
 // Bellman Ford Algorithm in Java class CreateGraph ( // CreateGraph - it consists of edges class CreateEdge ( int s, d, w; CreateEdge() ( s = d = w = 0; ) ); int V, E; CreateEdge edge(); // Creates a graph with V vertices and E edges CreateGraph(int v, int e) ( V = v; E = e; edge = new CreateEdge(e); for (int i = 0; i < e; ++i) edge(i) = new CreateEdge(); ) void BellmanFord(CreateGraph graph, int s) ( int V = graph.V, E = graph.E; int dist() = new int(V); // Step 1: fill the distance array and predecessor array for (int i = 0; i < V; ++i) dist(i) = Integer.MAX_VALUE; // Mark the source vertex dist(s) = 0; // Step 2: relax edges |V| - 1 times for (int i = 1; i < V; ++i) ( for (int j = 0; j < E; ++j) ( // Get the edge data int u = graph.edge(j).s; int v = graph.edge(j).d; int w = graph.edge(j).w; if (dist(u) != Integer.MAX_VALUE && dist(u) + w < dist(v)) dist(v) = dist(u) + w; ) ) // Step 3: detect negative cycle // if value changes then we have a negative cycle in the graph // and we cannot find the shortest distances for (int j = 0; j < E; ++j) ( int u = graph.edge(j).s; int v = graph.edge(j).d; int w = graph.edge(j).w; if (dist(u) != Integer.MAX_VALUE && dist(u) + w < dist(v)) ( System.out.println("CreateGraph contains negative w cycle"); return; ) ) // No negative w cycle found! // Print the distance and predecessor array printSolution(dist, V); ) // Print the solution void printSolution(int dist(), int V) ( System.out.println("Vertex Distance from Source"); for (int i = 0; i 1 graph.edge(0).s = 0; graph.edge(0).d = 1; graph.edge(0).w = 5; // edge 0 --> 2 graph.edge(1).s = 0; graph.edge(1).d = 2; graph.edge(1).w = 4; // edge 1 --> 3 graph.edge(2).s = 1; graph.edge(2).d = 3; graph.edge(2).w = 3; // edge 2 --> 1 graph.edge(3).s = 2; graph.edge(3).d = 1; graph.edge(3).w = 6; // edge 3 --> 2 graph.edge(4).s = 3; graph.edge(4).d = 2; graph.edge(4).w = 2; graph.BellmanFord(graph, 0); // 0 is the source vertex ) )
 // Bellman Ford Algorithm in C #include #include #define INFINITY 99999 //struct for the edges of the graph struct Edge ( int u; //start vertex of the edge int v; //end vertex of the edge int w; //weight of the edge (u,v) ); //Graph - it consists of edges struct Graph ( int V; //total number of vertices in the graph int E; //total number of edges in the graph struct Edge *edge; //array of edges ); void bellmanford(struct Graph *g, int source); void display(int arr(), int size); int main(void) ( //create graph struct Graph *g = (struct Graph *)malloc(sizeof(struct Graph)); g->V = 4; //total vertices g->E = 5; //total edges //array of edges for graph g->edge = (struct Edge *)malloc(g->E * sizeof(struct Edge)); //------- adding the edges of the graph /* edge(u, v) where u = start vertex of the edge (u,v) v = end vertex of the edge (u,v) w is the weight of the edge (u,v) */ //edge 0 --> 1 g->edge(0).u = 0; g->edge(0).v = 1; g->edge(0).w = 5; //edge 0 --> 2 g->edge(1).u = 0; g->edge(1).v = 2; g->edge(1).w = 4; //edge 1 --> 3 g->edge(2).u = 1; g->edge(2).v = 3; g->edge(2).w = 3; //edge 2 --> 1 g->edge(3).u = 2; g->edge(3).v = 1; g->edge(3).w = 6; //edge 3 --> 2 g->edge(4).u = 3; g->edge(4).v = 2; g->edge(4).w = 2; bellmanford(g, 0); //0 is the source vertex return 0; ) void bellmanford(struct Graph *g, int source) ( //variables int i, j, u, v, w; //total vertex in the graph g int tV = g->V; //total edge in the graph g int tE = g->E; //distance array //size equal to the number of vertices of the graph g int d(tV); //predecessor array //size equal to the number of vertices of the graph g int p(tV); //step 1: fill the distance array and predecessor array for (i = 0; i < tV; i++) ( d(i) = INFINITY; p(i) = 0; ) //mark the source vertex d(source) = 0; //step 2: relax edges |V| - 1 times for (i = 1; i <= tV - 1; i++) ( for (j = 0; j edge(j).u; v = g->edge(j).v; w = g->edge(j).w; if (d(u) != INFINITY && d(v)> d(u) + w) ( d(v) = d(u) + w; p(v) = u; ) ) ) //step 3: detect negative cycle //if value changes then we have a negative cycle in the graph //and we cannot find the shortest distances for (i = 0; i edge(i).u; v = g->edge(i).v; w = g->edge(i).w; if (d(u) != INFINITY && d(v)> d(u) + w) ( printf("Negative weight cycle detected!"); return; ) ) //No negative weight cycle found! //print the distance and predecessor array printf("Distance array: "); display(d, tV); printf("Predecessor array: "); display(p, tV); ) void display(int arr(), int size) ( int i; for (i = 0; i < size; i++) ( printf("%d ", arr(i)); ) printf(""); )
 // Bellman Ford Algorithm in C++ #include // Struct for the edges of the graph struct Edge ( int u; //start vertex of the edge int v; //end vertex of the edge int w; //w of the edge (u,v) ); // Graph - it consists of edges struct Graph ( int V; // Total number of vertices in the graph int E; // Total number of edges in the graph struct Edge* edge; // Array of edges ); // Creates a graph with V vertices and E edges struct Graph* createGraph(int V, int E) ( struct Graph* graph = new Graph; graph->V = V; // Total Vertices graph->E = E; // Total edges // Array of edges for graph graph->edge = new Edge(E); return graph; ) // Printing the solution void printArr(int arr(), int size) ( int i; for (i = 0; i V; int E = graph->E; int dist(V); // Step 1: fill the distance array and predecessor array for (int i = 0; i < V; i++) dist(i) = INT_MAX; // Mark the source vertex dist(u) = 0; // Step 2: relax edges |V| - 1 times for (int i = 1; i <= V - 1; i++) ( for (int j = 0; j edge(j).u; int v = graph->edge(j).v; int w = graph->edge(j).w; if (dist(u) != INT_MAX && dist(u) + w < dist(v)) dist(v) = dist(u) + w; ) ) // Step 3: detect negative cycle // if value changes then we have a negative cycle in the graph // and we cannot find the shortest distances for (int i = 0; i edge(i).u; int v = graph->edge(i).v; int w = graph->edge(i).w; if (dist(u) != INT_MAX && dist(u) + w 1 graph->edge(0).u = 0; graph->edge(0).v = 1; graph->edge(0).w = 5; //edge 0 --> 2 graph->edge(1).u = 0; graph->edge(1).v = 2; graph->edge(1).w = 4; //edge 1 --> 3 graph->edge(2).u = 1; graph->edge(2).v = 3; graph->edge(2).w = 3; //edge 2 --> 1 graph->edge(3).u = 2; graph->edge(3).v = 1; graph->edge(3).w = 6; //edge 3 --> 2 graph->edge(4).u = 3; graph->edge(4).v = 2; graph->edge(4).w = 2; BellmanFord(graph, 0); //0 is the source vertex return 0; )

Bellman Fords kompleksitet

Tidskompleksitet

Beste sakskompleksitet O (E)
Gjennomsnittlig sakskompleksitet O (VE)
Verste sakskompleksitet O (VE)

Romkompleksitet

Og romkompleksiteten er O(V).

Bellman Fords algoritmeapplikasjoner

  1. For beregning av korteste stier i rutealgoritmer
  2. For å finne den korteste veien

Interessante artikler...