Dijkstras algoritme

Dijkstras algoritme lar oss finne den korteste stien mellom to toppunkt i en graf.

Det adskiller seg fra det minste spennende treet fordi den korteste avstanden mellom to hjørner kanskje ikke inkluderer alle hjørnene i grafen.

Hvordan Dijkstras algoritme fungerer

Dijkstras algoritme fungerer på bakgrunn av at en hvilken som helst undervei B -> Dav den korteste banen A -> Dmellom hjørnene A og D også er den korteste banen mellom hjørnene B og D.

Hver sti er den korteste veien

Djikstra brukte denne egenskapen i motsatt retning, dvs. vi overvurderer avstanden til hvert toppunkt fra startpunktet. Så besøker vi hver node og naboene for å finne den korteste underveien til disse naboene.

Algoritmen bruker en grådig tilnærming i den forstand at vi finner den nest beste løsningen i håp om at sluttresultatet er den beste løsningen for hele problemet.

Eksempel på Dijkstras algoritme

Det er lettere å starte med et eksempel og deretter tenke på algoritmen.

Start med et vektet diagram Velg et startpunkt og tilordne uendelige baneverdier til alle andre enheter Gå til hvert toppunkt og oppdater banelengden Hvis banelengden til det tilstøtende toppunktet er mindre enn ny banelengde, må du ikke oppdatere det Unngå å oppdatere banen lengder på allerede besøkte hjørner Etter hver iterasjon velger vi det ubesøkte toppunktet med minst banelengde. Så vi velger 5 før 7 Legg merke til hvordan toppunktet til høyre har banelengden oppdatert to ganger. Gjenta til alle toppunktene har blitt besøkt

Djikstras algoritme pseudokode

Vi må opprettholde stiavstanden til hvert toppunkt. Vi kan lagre det i en rekke størrelser v, hvor v er antall hjørner.

Vi ønsker også å kunne få den korteste stien, ikke bare vite lengden på den korteste stien. For dette kartlegger vi hvert toppunkt til toppunktet som sist oppdaterte banelengden.

Når algoritmen er over, kan vi gå tilbake fra destinasjonspunktet til kildepunktet for å finne stien.

En minimum prioritetskø kan brukes til å effektivt motta toppunktet med minst baneavstand.

 function dijkstra(G, S) for each vertex V in G distance(V) <- infinite previous(V) <- NULL If V != S, add V to Priority Queue Q distance(S) <- 0 while Q IS NOT EMPTY U <- Extract MIN from Q for each unvisited neighbour V of U tempDistance <- distance(U) + edge_weight(U, V) if tempDistance < distance(V) distance(V) <- tempDistance previous(V) <- U return distance(), previous()

Kode for Dijkstras algoritme

Implementeringen av Dijkstras algoritme i C ++ er gitt nedenfor. Kodens kompleksitet kan forbedres, men abstraksjonene er praktiske å relatere koden med algoritmen.

Python Java C C ++
 # Dijkstra's Algorithm in Python import sys # Providing the graph vertices = ((0, 0, 1, 1, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0), (1, 1, 0, 1, 1, 0, 0), (1, 0, 1, 0, 0, 0, 1), (0, 0, 1, 0, 0, 1, 0), (0, 1, 0, 0, 1, 0, 1), (0, 0, 0, 1, 0, 1, 0)) edges = ((0, 0, 1, 2, 0, 0, 0), (0, 0, 2, 0, 0, 3, 0), (1, 2, 0, 1, 3, 0, 0), (2, 0, 1, 0, 0, 0, 1), (0, 0, 3, 0, 0, 2, 0), (0, 3, 0, 0, 2, 0, 1), (0, 0, 0, 1, 0, 1, 0)) # Find which vertex is to be visited next def to_be_visited(): global visited_and_distance v = -10 for index in range(num_of_vertices): if visited_and_distance(index)(0) == 0 and (v < 0 or visited_and_distance(index)(1) <= visited_and_distance(v)(1)): v = index return v num_of_vertices = len(vertices(0)) visited_and_distance = ((0, 0)) for i in range(num_of_vertices-1): visited_and_distance.append((0, sys.maxsize)) for vertex in range(num_of_vertices): # Find next vertex to be visited to_visit = to_be_visited() for neighbor_index in range(num_of_vertices): # Updating new distances if vertices(to_visit)(neighbor_index) == 1 and visited_and_distance(neighbor_index)(0) == 0: new_distance = visited_and_distance(to_visit)(1) + edges(to_visit)(neighbor_index) if visited_and_distance(neighbor_index)(1)> new_distance: visited_and_distance(neighbor_index)(1) = new_distance visited_and_distance(to_visit)(0) = 1 i = 0 # Printing the distance for distance in visited_and_distance: print("Distance of ", chr(ord('a') + i), " from source vertex: ", distance(1)) i = i + 1
 // Dijkstra's Algorithm in Java public class Dijkstra ( public static void dijkstra(int()() graph, int source) ( int count = graph.length; boolean() visitedVertex = new boolean(count); int() distance = new int(count); for (int i = 0; i < count; i++) ( visitedVertex(i) = false; distance(i) = Integer.MAX_VALUE; ) // Distance of self loop is zero distance(source) = 0; for (int i = 0; i < count; i++) ( // Update the distance between neighbouring vertex and source vertex int u = findMinDistance(distance, visitedVertex); visitedVertex(u) = true; // Update all the neighbouring vertex distances for (int v = 0; v < count; v++) ( if (!visitedVertex(v) && graph(u)(v) != 0 && (distance(u) + graph(u)(v) < distance(v))) ( distance(v) = distance(u) + graph(u)(v); ) ) ) for (int i = 0; i < distance.length; i++) ( System.out.println(String.format("Distance from %s to %s is %s", source, i, distance(i))); ) ) // Finding the minimum distance private static int findMinDistance(int() distance, boolean() visitedVertex) ( int minDistance = Integer.MAX_VALUE; int minDistanceVertex = -1; for (int i = 0; i < distance.length; i++) ( if (!visitedVertex(i) && distance(i) < minDistance) ( minDistance = distance(i); minDistanceVertex = i; ) ) return minDistanceVertex; ) public static void main(String() args) ( int graph()() = new int()() ( ( 0, 0, 1, 2, 0, 0, 0 ), ( 0, 0, 2, 0, 0, 3, 0 ), ( 1, 2, 0, 1, 3, 0, 0 ), ( 2, 0, 1, 0, 0, 0, 1 ), ( 0, 0, 3, 0, 0, 2, 0 ), ( 0, 3, 0, 0, 2, 0, 1 ), ( 0, 0, 0, 1, 0, 1, 0 ) ); Dijkstra T = new Dijkstra(); T.dijkstra(graph, 0); ) )
 // Dijkstra's Algorithm in C #include #define INFINITY 9999 #define MAX 10 void Dijkstra(int Graph(MAX)(MAX), int n, int start); void Dijkstra(int Graph(MAX)(MAX), int n, int start) ( int cost(MAX)(MAX), distance(MAX), pred(MAX); int visited(MAX), count, mindistance, nextnode, i, j; // Creating cost matrix for (i = 0; i < n; i++) for (j = 0; j < n; j++) if (Graph(i)(j) == 0) cost(i)(j) = INFINITY; else cost(i)(j) = Graph(i)(j); for (i = 0; i < n; i++) ( distance(i) = cost(start)(i); pred(i) = start; visited(i) = 0; ) distance(start) = 0; visited(start) = 1; count = 1; while (count < n - 1) ( mindistance = INFINITY; for (i = 0; i < n; i++) if (distance(i) < mindistance && !visited(i)) ( mindistance = distance(i); nextnode = i; ) visited(nextnode) = 1; for (i = 0; i < n; i++) if (!visited(i)) if (mindistance + cost(nextnode)(i) < distance(i)) ( distance(i) = mindistance + cost(nextnode)(i); pred(i) = nextnode; ) count++; ) // Printing the distance for (i = 0; i < n; i++) if (i != start) ( printf("Distance from source to %d: %d", i, distance(i)); ) ) int main() ( int Graph(MAX)(MAX), i, j, n, u; n = 7; Graph(0)(0) = 0; Graph(0)(1) = 0; Graph(0)(2) = 1; Graph(0)(3) = 2; Graph(0)(4) = 0; Graph(0)(5) = 0; Graph(0)(6) = 0; Graph(1)(0) = 0; Graph(1)(1) = 0; Graph(1)(2) = 2; Graph(1)(3) = 0; Graph(1)(4) = 0; Graph(1)(5) = 3; Graph(1)(6) = 0; Graph(2)(0) = 1; Graph(2)(1) = 2; Graph(2)(2) = 0; Graph(2)(3) = 1; Graph(2)(4) = 3; Graph(2)(5) = 0; Graph(2)(6) = 0; Graph(3)(0) = 2; Graph(3)(1) = 0; Graph(3)(2) = 1; Graph(3)(3) = 0; Graph(3)(4) = 0; Graph(3)(5) = 0; Graph(3)(6) = 1; Graph(4)(0) = 0; Graph(4)(1) = 0; Graph(4)(2) = 3; Graph(4)(3) = 0; Graph(4)(4) = 0; Graph(4)(5) = 2; Graph(4)(6) = 0; Graph(5)(0) = 0; Graph(5)(1) = 3; Graph(5)(2) = 0; Graph(5)(3) = 0; Graph(5)(4) = 2; Graph(5)(5) = 0; Graph(5)(6) = 1; Graph(6)(0) = 0; Graph(6)(1) = 0; Graph(6)(2) = 0; Graph(6)(3) = 1; Graph(6)(4) = 0; Graph(6)(5) = 1; Graph(6)(6) = 0; u = 0; Dijkstra(Graph, n, u); return 0; )
 // Dijkstra's Algorithm in C++ #include #include #define INT_MAX 10000000 using namespace std; void DijkstrasTest(); int main() ( DijkstrasTest(); return 0; ) class Node; class Edge; void Dijkstras(); vector* AdjacentRemainingNodes(Node* node); Node* ExtractSmallest(vector& nodes); int Distance(Node* node1, Node* node2); bool Contains(vector& nodes, Node* node); void PrintShortestRouteTo(Node* destination); vector nodes; vector edges; class Node ( public: Node(char id) : id(id), previous(NULL), distanceFromStart(INT_MAX) ( nodes.push_back(this); ) public: char id; Node* previous; int distanceFromStart; ); class Edge ( public: Edge(Node* node1, Node* node2, int distance) : node1(node1), node2(node2), distance(distance) ( edges.push_back(this); ) bool Connects(Node* node1, Node* node2) ( return ( (node1 == this->node1 && node2 == this->node2) || (node1 == this->node2 && node2 == this->node1)); ) public: Node* node1; Node* node2; int distance; ); /////////////////// void DijkstrasTest() ( Node* a = new Node('a'); Node* b = new Node('b'); Node* c = new Node('c'); Node* d = new Node('d'); Node* e = new Node('e'); Node* f = new Node('f'); Node* g = new Node('g'); Edge* e1 = new Edge(a, c, 1); Edge* e2 = new Edge(a, d, 2); Edge* e3 = new Edge(b, c, 2); Edge* e4 = new Edge(c, d, 1); Edge* e5 = new Edge(b, f, 3); Edge* e6 = new Edge(c, e, 3); Edge* e7 = new Edge(e, f, 2); Edge* e8 = new Edge(d, g, 1); Edge* e9 = new Edge(g, f, 1); a->distanceFromStart = 0; // set start node Dijkstras(); PrintShortestRouteTo(f); ) /////////////////// void Dijkstras() ( while (nodes.size()> 0) ( Node* smallest = ExtractSmallest(nodes); vector* adjacentNodes = AdjacentRemainingNodes(smallest); const int size = adjacentNodes->size(); for (int i = 0; i at(i); int distance = Distance(smallest, adjacent) + smallest->distanceFromStart; if (distance distanceFromStart) ( adjacent->distanceFromStart = distance; adjacent->previous = smallest; ) ) delete adjacentNodes; ) ) // Find the node with the smallest distance, // remove it, and return it. Node* ExtractSmallest(vector& nodes) ( int size = nodes.size(); if (size == 0) return NULL; int smallestPosition = 0; Node* smallest = nodes.at(0); for (int i = 1; i distanceFromStart distanceFromStart) ( smallest = current; smallestPosition = i; ) ) nodes.erase(nodes.begin() + smallestPosition); return smallest; ) // Return all nodes adjacent to 'node' which are still // in the 'nodes' collection. vector* AdjacentRemainingNodes(Node* node) ( vector* adjacentNodes = new vector(); const int size = edges.size(); for (int i = 0; i node1 == node) ( adjacent = edge->node2; ) else if (edge->node2 == node) ( adjacent = edge->node1; ) if (adjacent && Contains(nodes, adjacent)) ( adjacentNodes->push_back(adjacent); ) ) return adjacentNodes; ) // Return distance between two connected nodes int Distance(Node* node1, Node* node2) ( const int size = edges.size(); for (int i = 0; i Connects(node1, node2)) ( return edge->distance; ) ) return -1; // should never happen ) // Does the 'nodes' vector contain 'node' bool Contains(vector& nodes, Node* node) ( const int size = nodes.size(); for (int i = 0; i < size; ++i) ( if (node == nodes.at(i)) ( return true; ) ) return false; ) /////////////////// void PrintShortestRouteTo(Node* destination) ( Node* previous = destination; cout << "Distance from start: "  id 
 node2 == node) ( cout << "adjacent: "  id 
   

Dijkstra's Algorithm Complexity

Time Complexity: O(E Log V)

where, E is the number of edges and V is the number of vertices.

Space Complexity: O(V)

Dijkstra's Algorithm Applications

  • To find the shortest path
  • In social networking applications
  • In a telephone network
  • To find the locations in the map

Interessante artikler...